skip to main content


Search for: All records

Creators/Authors contains: "White, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Langran, E. ; Christensen, P. ; Sanson, J. (Ed.)
    Prior to COVID-19 and the shift to fully online instruction, teacher preparation programs were teaching candidates to use technology in the classroom, but they were not focusing on how to teach in exclusively online or hybrid models. In the future, all preservice teachers will need to know how to teach online, whether due to necessity or by choice. Therefore, the purpose of our research is to first identify essential elements of critical digital pedagogy for facilitating online inquiry, and then to integrate these methods into our teacher preparation program to prepare preservice teachers to facilitate inquiry-based science, technology, and mathematics (STEM) effectively in online learning environments that are equitable and inclusive of all learners. We utilize a mixed-methods approach with quantitative and qualitative measures including literature reviews, individual interviews, focus groups, program documents, and efficacy surveys. Drawing on this data, this presentation shares the findings from the first part of this three-year research project by discussing essential elements of critical digital pedagogy for facilitating online STEM inquiry. We identify what tools and instructional approaches can be used to support STEM learning in online environments in ways that will support all students, including those who are traditionally marginalized in U.S. schools. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract Stigma toward people living with HIV/AIDS (PLWHA) has impeded the response to the disease across the world. Widespread stigma leads to poor adherence of preventative measures while also causing PLWHA to avoid testing and care, delaying important treatment. Stigma is clearly a hugely complex construct. However, it can be broken down into components which include internalized stigma (how people with the trait feel about themselves) and enacted stigma (how a community reacts to an individual with the trait). Levels of HIV/AIDS-related stigma are particularly high in sub-Saharan Africa, which contributed to a surge in cases in Kenya during the late twentieth century. Since the early twenty-first century, the United Nations and governments around the world have worked to eliminate stigma from society and resulting public health education campaigns have improved the perception of PLWHA over time, but HIV/AIDS remains a significant problem, particularly in Kenya. We take a data-driven approach to create a time-dependent stigma function that captures both the level of internalized and enacted stigma in the population. We embed this within a compartmental model for HIV dynamics. Since 2000, the population in Kenya has been growing almost exponentially and so we rescale our model system to create a coupled system for HIV prevalence and fraction of individuals that are infected that seek treatment. This allows us to estimate model parameters from published data. We use the model to explore a range of scenarios in which either internalized or enacted stigma levels vary from those predicted by the data. This analysis allows us to understand the potential impact of different public health interventions on key HIV metrics such as prevalence and disease-related death and to see how close Kenya will get to achieving UN goals for these HIV and stigma metrics by 2030. 
    more » « less
  4. null (Ed.)
    The 2014–2016 West African outbreak of Ebola Virus Disease (EVD) was the largest and most deadly to date. Contact tracing, following up those who may have been infected through contact with an infected individual to prevent secondary spread, plays a vital role in controlling such outbreaks. Our aim in this work was to mechanistically represent the contact tracing process to illustrate potential areas of improvement in managing contact tracing efforts. We also explored the role contact tracing played in eventually ending the outbreak. We present a system of ordinary differential equations to model contact tracing in Sierra Leonne during the outbreak. Using data on cumulative cases and deaths, we estimate most of the parameters in our model. We include the novel features of counting the total number of people being traced and tying this directly to the number of tracers doing this work. Our work highlights the importance of incorporating changing behavior into one’s model as needed when indicated by the data and reported trends. Our results show that a larger contact tracing program would have reduced the death toll of the outbreak. Counting the total number of people being traced and including changes in behavior in our model led to better understanding of disease management. 
    more » « less
  5. Age related macular degeneration (AMD) is the leading cause of blindness in developed countries. AMD occurs due to dysfunction of the retinal pigment epithelial (RPE) cell basement membrane, the Bruch’s membrane. Previous work in the lab demonstrated that retinal pigment epithelial cells preferred stiff substrates to soft ones, and that RGD-conjugated polyethylene glycol (PEG) hydrogels alone were not sufficient to support long term RPE cell health.​ There is evidence that epithelial and neural cells prefer laminin-derived peptides over fibronectin-derived peptides. Therefore, we examined the fate of RPE cells when seeded on PEG hydrogels conjugated with synthetic laminin peptides. 
    more » « less
  6. Abstract

    Sea level rise (SLR) is a long‐lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process‐based models. However, risk‐averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high‐end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high‐end scenarios. High‐end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1‐2.6) relative to pre‐industrial values our high‐end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5‐8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long‐term benefits of mitigation. However, even a modest 2°C warming may cause multi‐meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high‐end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high‐end SLR.

     
    more » « less